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Problems associated with the limiting transition in the second-order Lagrange equations, when the 

coefficients of rigidity and viscosity and added masses tend to infinity are considered. Under certain 

conditions, the solutions of the initial equations approach those of the limiting problem with constraints. 

For integrable constraints, the limiting equations are identical with the usual equations with constraint 

multipliers. In the case of non-integrable constraints, the solutions depends closely on the way in which they 

are realized. The generalized models of the dynamics of systems with non-integrable constraints and the 

properties of the limiting equations of motion are discussed. 

~.LETx~,..., x, be generalized coordinates of a mechanical system, let T be its kinetic energy and F1, . . . , F,, 

generalized forces. If the system is “free” (that is, the coordinates x and velocities X’ are not subject to a 
non-trivial relation), then its motions can be described by the Lagrange equations 

lrl =F (1.1) 

where [f] is the variational derivative (#lax’) - df lax. 
If there is a constraint @(x0, x, t) = 0 (in applications, the function 0 is linear in x’), then Eqs (1.1) are 

usually replaced by the more general equations 

[Tl =F+Aa*/ax’, O=O, (1.2) 

where A is an as yet undefined multiplier. Let SD//ax’ #O. Then A can be put in the form of an explicit function 
of x0, x and t without solving (1.2). 
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Equations (1.2) are equivalent to the d’Alembert-Lagrange principle: 

([Tf -F)bx=O, e-0 

where the possible displacements 6x satisfy the equation 

(1.3) 

($*/ax j 6x = 0 (1.4) 

In non-holonomic dynamics, it is usual to start from the d’Alembert-Lagrange principle. Some mathemati- 
cians (Gauss, Poinsot, Jacobi, Kirchhoff, etc.) have considered that the d’Alembert-Lagrange principle is 
independent and has no need of proof (see [l, 21). However, in the conventional approach to dynamics, this 
principle is proved with the help of the releasability principle and the axiom of ideal constraints. This principle 
states that a system with a constraint can be regarded as free, but the external forces F must be supplemented 
by the constraint reaction 

R=[ZJ -F 

The axiom of ideal constraints is expressed by the equation 

(1.5) 

R6x=O (1.6) 

Relations (1.5) and (1.6), together with the constraint CD = 0 are, of course, equivalent to (1.3). However, 
Eqs (1.3) on their own without (1.4), which defines possible displacements, do not uniquely define the 
equations of motion. With this construction of dynamics, therefore, a definition of possible displacements must 
be included among the axioms,. It is independent of axioms (1.5) and (1.6). In fact, in the theory of systems with 
servocouplings 131, relations (1.5) and (1.6) hold, but the equations for possible displacements are different 
from (1.4). 

Non-holonomic Eqs (1.2) are covariant: all their terms are transformed when the generalized coordinates are 
replaced by a covariant law. The simple but important covariance property guarantees mathematical 
consistency of the physical model. An example of the opposite kind is the “Lindelof model” introduced by 
Kharlamov [4], in which the motions of the system depend on the way in which the cyclic velocities have been 
eliminated from the Lagrange function. Here is a simple example: let L = (xo2+ya2+ 2“)/2 be a Lagrange 
function, and x-sin z = y’cosz the equation of a non-integrable constraint. The coordinates x and y are cyclic. 
Eliminating the cyclic velocity y’ and writing the Lagrange equations with Lagrangian (z’* +.x’~cos-~z)/~, we 
find that the coordinate x almost always increases without limit as t increases. On the other hand, eliminating 
the cyclic velocity x*, solving the Lagrange equation with Lagrangian (.zg2 +y’2sin-2z)/2 and then integrating 
relation X* = y’ctgz, we find that for almost all initial values, the coordinate x is bounded. Hence, the 
“Lindelof model” is internally contradictory and so, in general, the question of comparison with experiment 
should not be raised. We note that Lindelof himself was not concerned with constructing new models of 
motion: he made an error in his derivation of the non-holonomic equations from the d’Alembert-Lagrange 
principle. 

The question of the applicability of the non-holonomic model (indeed, like any other model of the mechanics 
of systems with constraints) cannot, in any specific situation be solved within the framework of an axiomatic 
scheme without recourse to experimental results. For example, it cannot be stated a priori that the 
non-integrable constraints in the problem of the rolling of a rigid body without slipping are ideal. The point is 
that, apart from the forces of sliding friction (which do not do work in the rolling of the body), in reality there 
are always forces of rolling and spinning friction (which generally do work on possible displacements of the 
rigid body). In fact, we are certain that if there is only one force of Coulomb sliding friction, as the coefficient of 
dry friction tends to infinity, for any initial data (consistent with the restraints) a rigid body will roll in 
accordance with the non-holonomic equations. For a uniform billiard ball, this result follows from the classical 
studies of Euler and Coriolis (see [S]). More-general results on realizing non-holonomic constraints by the 
forces of Coulomb friction have also been obtained [6,7]. 

2. The formal-axiomatic method of justifying the dynamics of systems with constraints (which was discussed 
in Sec. 1) has obvious defects: the origin of the initial axioms [such as the axioms of possible displacements 
(1.4)] remains unknown, and the limits of applicability of the theoretical model remain undefined. From this 
standpoint, a “constructive” approach to the theory of systems with restraints, based on an analysis of the 
physical means of realizing them, would be preferable. The main idea here is to make a limiting transition to 
the “complete” equations of motion of the free system, when certain physical parameters of the system (the 
coefficients of rigidity and viscosity, and added masses) tend to infinity. 

It should be clearly acknowledged that constraints of this kind do not actually exist in nature: they are 
introduced in order to simplify the complex physical picture of interaction. The constructive method provides a 
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simplified mathematical model, which gives an adequate description of the motion of a mechanical system on 
the basis of an analysis of the mechanism of that interaction. 

The underlying ideas of the constructive approach have been outlined in the works of Le Cornu, Klein and 
Prandtl on certain paradoxes of dry friction, discovered by Painleve (see [S]). It was proposed to replace the 
rigid bodies of the model problems of Painlevd by elastic bodies with large elastic moduli (which, it must be 
said, correspond better with reality). When this was done, the effects associated with the non-uniqueness and 
non-existence of solutions of the equations of motion disappeared. The modulus of elasticity was then made to 
tend to inanity. As a rule, the motion of a system with absolutely rigid bodies is obtained by a passage to the 
limit of this kind. In the PainlevC problems, however, no limit exists, suggesting that it is incorrect to use the 
model of a rigid body in these cases. 

Courant formulated a general theory of the realization of holonomic (integrable) constraints using a field of 
elastic forces with large elastic modulus, subsequently proved in [9]. 

The problem of realizing non-integrable constraints by means of viscous friction forces was posed by 
Caratheodory [lo]. He examined the problem of a skate sliding along the ice under the operation of an 
additional force -NV, where N = const >O, and v is the projection of the velocity of the point of contact 
perpendicular to the plane of the runner. It was shown [ 1 l] that, as N + 00, the motion of a system such as this 
tends to that of a skate with a non-holonomic constraint and the velocity of the point of contact lies in the plane 
of the runner. 

The motion of a system on which additional viscous friction forces with dissipative Rayleigh function N@‘/2 
act has been analysed in [ 12-141 as an extension of the results in [ 10, 1 l] to the multidimensional case. The 
equations of motion have the form 

[fl = F ~ NcPa@/ax’ (2.1) 

If the forces Fare potential forces (F = -t?V/dx), then (Ti- V)’ = -N@‘. Thus, the energy is not dissipated 
in motions for which @ = 0. In the general case, however, system (2.1) cannot have motions of this kind for 
finite values of N. The friction defined by the Rayleigh function NQ2/2 is frequently referred to as anisotropic. 

It turns out that, as N-+ co, the solutions of system (2.1) with fixed initial data in any finite time interval 
0< t< 7 tend to the solution of the non-holonomic Eqs (1.2). The initial data cannot satisfy the constraint 
CD = 0, and so, owing to the presence of a boundary layer, the convergence of the solutions of (2. I) as N-, 00 to 
the solutions of (1.2) is not uniform in the interval (0, T). This theorem about the passage to the limit can be 
proved by the methods of the theory of singularly perturbed systems of differential equations. 

3. The passage to the limit of infinite viscosity is not the only one which reduces the system to motion with a 
constraint. In [15] an analysis is made of the more-generai problem of the motion of a free mechanical system 
with kinetic energy 

TN= T+aN@‘I2, a = cclnst a 0 

on which, apart from the generalized forces, F, anisotropic viscous forces with dissipative Rayleigh function 
pN@‘/2, p = const 30 act. The motion is described by the system of equations 

(3.1) 

If CD is a linear homogeneous form with respect to the velocities, then for all N>O the function TN is a 
positive definite quadratic form with respect to x0. The coefficient crN has the sense of an added mass (or 
moment of inertia). For large values of N, a system with kinetic energy TN possesses strong anisotropy of the 
inertial tensor: for motions with velocity of equal magnitude, the kinetic energy of the system depends closely 
on the direction of motion. A classical example is the problem of the motion of a rigid body in a fluid. 

We put Q, = [a(x). x’] and assume that af0. Suppose that a>0 (the case cy = 0 has already been considered 
in Sec. 2). 

Theorem 1. Let xiv(t) be a solution of (3.1) with initial values 

XN(o) = X0, ‘X&(o) = t$, f w,/N (3.2) 

where [a (x0), vo] = 0 and x0, v. and wa are independent of N. Then in each finite time interval OS tc G- the limit 

exists, where the limiting motion x(t) and a certain function h(t) satisfy the system of differential equations 
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[T] = F - ah’a@/ax’- crhp] - @as/ax; @ = 0 

and the initial data 

x(0)=xrJ, x’(0) = ug, A (0) = b (x0 ). w. )/a 

The mechanical meaning of the multiplier A is clear from the limiting relation: 

(3.3) 

(3.4) 

ah(t) = lim N(u Cw ON, x&t)) (3.5) 
N+- 

When (Y = 0, Eqs (3.3) are the same as the usual non-holonomic equations (1.2). Suppose that the constraint 
@ = 0 is integrable: @ =f’(x). Then [a] = 0 and Eqs (3.3) will describe the motion of a holonomic system in 
redundant coordinatesx. However, if the constraint @ = 0 is non-integrable, when a# 0 (3.3) differ from (1.2). 

Theorem 1 was first established in the special case /3 = 0 [16, Part II]. The name “v&o mechanics” was given 
to the mathematical model of the motion of systems with constraints based on Eqs (3.3) (in which p = 0) [16]. 

The vako equations were known to Hertz? [17] in the special case of inertial motion (when F = 0) (and in fact 
they were first obtained by Lagrange in connection with problems of variational calculus). Hertz called the 
trajectories of vako motion geodesic paths, and ordinary non-holonomic trajectories--paths of least curvature. 
He also noticed the difference between non-holonomic and vako trajectories in the billiard-ball problem. Thus, 
the calculations from Sec. 3 of the paper by Kharlamov [4] add nothing to what Hertz observed. Also, that 
analysis is incomplete and the conclusions drawn are mistaken: vako motion of a billard ball includes all 
non-holonomic motions (the integration constants K, E merely have to be made equal to zero). The reverse is, 
of course, not true. 

The reason for this effect lies in the fact that, when a uniform sphere rolls, the constraint reactions become 
zero. In any case, this is a formal comment since (as Theorem 1 makes clear) the vako model does not have any 
direct bearing on the problem of the rolling of a rigid body, as stated clearly in [16, Part III, p. 1101. 

Hertz considered that real systems with constraints move on paths of least curvature, rather than geodesics. 
His argument is noteworthy: “. . . a sphere moving in accordance with the principle [Hamilton’s principle] 
would decidedly have the appearance of a living thing, steering its course consciously towards a given goal, 
whilst a sphere following the laws of nature would give the impression of an inanimate mass spinning steadily 
towards it” [17, p. 201. 

Equations (3.3) are covariant and universal: they can be written for any system with a constraint. The 
theoretical conditions under which these equations are applicable are given by Theorem 1. For instance, if the 
constraints arise due to anisotropy of the inertial properties of the system (a # 0, /3 = 0), then from a theoretical 
point of view it is natural in this case to use the vako model, but if they arise from the presence of anisotropic 
friction (o = 0, /3#0), the motion of a system with a constraint can be described in the framework of the 
classical non-holonomic model (cf. [16, Part III, p. 1101). 

It is clear from (3.3) that the non-holonomic and vako models are extreme cases of a more general 
mathematical model of the motion of systems with constraints, which includes the constant k = a/P (with the 
dimensions of time), which has to be found by experiment. 

In the case of inertial motion (F = 0), the constant k has a simple geometrical meaning: it characterizes the 
deviation of the geodesic curvature of the trajectories of the system (3.3) from the paths of least curvature (of 
Hertz), the non-holonomic trajectories. To show this, we will introduce the acceleration vector w with 
components 

where #’ are the Christoffel symbols of the Riemann metric defined by the kinetic energy T. Suppose that the 
non-integrable constraint can be described by the equation (a, x’) = 0 and 2T = (A(x)x’, x’). Eliminating A’ 
from (3.3) with the help of the constraint equation, we obtain the acceleration vector 

w=A(-&4-‘u+d-‘c) (3.6) ‘p 
(A-‘b.u). u _ b 

1 

C= 
(A-‘u, a). ’ 

b-(+-($) lx’ 

Since (A-la, c) = 0, from (3.6) we obtain the geodesic curvature 

$ Who obviously did not call the equations “vu/w’‘-see Editor’s note on p. 585 (Editor’s note). 
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Iwl’=h’(p’lol’+a’Icl’) (3.7) 

Here /WI’, iu12, 1 I2 c are the squares of the lengths of the vectors w. A -‘a, A-‘c in the internal metric of T. 
We will compare the geodesic curvature of the trajectories of system (3.3) with different values of k, but the 

same initial values of x, X* and A. Since, when (Y = 0, the value of /?A can be expressed uniquely in terms of x. X* 
(Sec. l), it is natural to rewrite (3.7) in the form 

Iwt2= (PQ’(lo I2 +k’1c I’) (3.8) 

where /?A, 1 a I and I c I are known functions of x and x’. If w* is the acceleration of non-holonomic motion in the 
same state (x.x’), then 

IwI* -lw,12=@h)‘k’lcl’ 

For integrable constraints c = 0 and so I w 1’ = I we 12. In the general case, however, when the constraint is 
non-integrable, c#O. We note that the inequality Iw I23 1 w* I*, which follows from (3.8), represents the 
principle of least curvature of Gauss and Hertz [17]. 

4. In [4], Kharlamov gave a false account of the meaning of the studies [1.5. 161, suggesting that they 
proposed replacing the classical non-holonomic model by the vako model. However, this was not done 
anywhere in those papers. On the contrary, in the very first paper of the cycle [16, Parts I and II], a theorem 
about the passage to the limit (when p = 0) is proved and the conditions of applicability of the vuko model, 
associated with anisotropy of the inertial tensor of the system, thereby indicated. The main result of 
Kharlamov’s paper [4] is the following: using three specific examples, he points out the difference between the 
solutions of the non-holonomic and vuko equations of motion and, on that basis, concludes that the vuko model 
is unacceptable. However, first, the difference had already been pointed out by Hertz, Holder and Suslov (for a 
modern analysis, see (181) and, secondly, Kharlamov ignores the physical conditions of the applicability of the 
vuko model. 

Let us look at these examples in more detail. 
The vuko problem of the rolling of a billiard ball was solved in Sec. 3. However, those calculations bear no 

relation to real dynamics, since the absence of sliding is taken into account by using viscous or dry friction 
forces, rather than the effect of added masses. 

The problem of a skate sliding on ice is discussed in Sec. 6 from the standpoint of the vuko model. Here, the 
non-integrable constraint (the velocity of the point of contact lies in the plane of the runner) is achieved by a 
lateral force, rather than by anisotropy of the inertial tensor. So the dynamics of this system can be described by 
classical non-holonomic equations (see [lo, 111). A different physical method of realizing the same 
non-integrable constraint based on the effect of added masses was pointed out in [16, Part III]. Plane-parallel 
motion of a rigid body (with a plane of symmetry) in the infinite volume of an ideal fluid was considered in the 
formulation of Kirchhoff. The kinetic energy of the “body-plus-fluid” system reduces to the form 

T= (a,~’ +alv2 + bw’)/2 

where u and v are the velocity components of some point of the body in fixed space, and o is its angular 
velocity. Owing to the effect of added masses, a, # u2. It was shown [16. Part III] that, due to the change in 
shape of the body, the mass u2 can be allowed to tend to infinity, and then ai and b tend to finite limits. 
According to Theorem 1 (with /3 = 0), as u2--+m the motion of a body of this kind is subject to the 
non-integrable constraint v = 0 (as in the problem of an ice skate) and described by vuko (rather than 
non-holonomic) equations. The “fanciful path of the skate” depicted in Fig. 4 of [4], is one of the trajectories of 

the limiting hydrodynamic problem. 
For large, but finite, values of u2, the velocity v is non-zero in the general case. However, the larger the value 

of a2 , the smaller v is, and the difference from vuko motion of such a body can be as small as we please. It must 
be borne in mind that the motion of a real ice skate actually also differs from non-holonomic motion (owing to 
the resistance to rotation of the skate by the ice). 

Finally, Suslov’s problem of the rotation of a rigid body about a fixed point, constrained by an untwisting 
thread, was considered in [4]. According to Suslov, the existence of a thread of this kind gives rise to rotation of 
a rigid body with a non-holonomic constraint: the projection of the angular velocity on a certain direction 1 in 
the body becomes zero. We note first that, in actual fact, the thread in no way prevents rotation of the body 
about the 1 axis. Thus, Suslov’s realization of the constraint is incorrect. This was apparently first pointed out by 

G. K. Pozharitskii. 
A correct realization of Suslov’s non-holonomic constraint was proposed by Vagner [ 191. This uses the effect 

of rolling without slipping and, therefore, (in Vagner’s realization) the rotation of the body is described by 
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non-holonomic equations. A different realization of a constraint was proposed in [16, Part II] (ml= 0). The 
body is placed in an ideal fluid, an elliptical plate with centre at the point of suspension is attached to it, and the 
1 axis is directed along the minor axis. If the plate is then lengthened without any change of its area, the 
associated moment of inertia of the body about the 1 axis will tend to infinity, and the other associated moments 
to zero. Hence, according to Theorem 1, in the limit the body rotates in accordance with the v&o equations 
and satisfies the constraint ol = 0. 

Poinsot provides an elegant geometrical representation: an elliptical plate, which is the section of an ellipsoid 
of inertia by a plane orthogonal to 1, rolls without slipping on a fixed plane orthogonal to the total kinetic 
moment of the “body-plus-&rid” system, about the point of attachment. We would re-emphasize that, in spite 
of Kharlamov’s assertion in 14, Introduction, Sec. 61, nowhere in [15, 161 is it suggested that the sliding of a 
skate on ice and the rotation of a rigid body with an untwisting thread can be described by the v&u equations. 

Kharlamov advances and defends the thesis that when a constraint (mathematicaIly defined by an equation) 
is introduced, this reflects “an essential of the effect studied”. 

Thus, according to Kharlamov, the dynamics of a system with constraints is uniquely defined by fixing its 
inertial properties (kinetic energy), the generalized forces and constraint equations. This thesis is refuted by the 
servocoupling theory of Begen [3]. Servocouplings are realized “actively” with the help of automatically 
controlled effects, and in the analysis of the motion of mechanical systems with servocouplings, the physical 
means of realizing them cannot be disregarded. The same applies to the theory of control systems: there are 
different ways of describing fluttering on the boundaries of a discontinuity, which depend on the switching 
mechanism [20]. 

The inapplicability of Kharlamov’s thesis is particularly evident in the case of the dynamics of systems with 
collisions, for he finds that the law of reflection is defined only by an equation of one-sided constraint. 
However, this is not the case: there are different models of collisions (absolutely elastic and anelastic collisions, 
Newton’s hypothesis, etc.), which depend on the physical properties of the colliding bodies. In fact, a collision 
is not instantaneous: over a short time interval the bodies are subject to deformation, accompanied by energy 
dissipation. It can be shown that, with the appropriate consistent transition to infinity of the elastic modulus 
and the coefficient of viscosity, the motion of a free system approaches that of motion with a collision, the 
limiting model depending substantially on the relation between the physical parameters of the problem 1211. 

From this standpoint, the main conclusion of [15. 161 is that, in the “passive” realization of non-integrable 
constraints, the dynamics of a limiting (simplified) system depends closely on the physical means of realizing 
the constraints. 

5. Kharlamov asserts ([4, Sec. 31) that the multipliers ;t do not have a mechanical meaning and thus “there 
are no rational premises for assigning specific initial conditions to them that correspond to the problem”. This is 
untrue. The mechanical meaning of the multiplier h is obvious from (3.5). For instance, in the v&o 
modification of the Suslov problem (Sec. 4), h can be interpreted as the kinetic moment of the “body-plus- 
fluid” system about the f axis. The initial value of h is given by (3.5). In particular, if the initial values x0 and .Y> 
satisfy the constraint equation, then A0 = 0. 

Thus, the initial value for A can be calculated in the “limiting” problem, when Nf m. However, a different 
appraoch can be used. Knowing the position of the system at two close instants of time, we can find the initial 
values x0, xi and ho and thus uniquely identify the required solution. We note that unlike the vako model, the 
boundary-value problem is almost always insoluble in non-holonomic mechanics. 

Theorem 1 clearly explains the reason why the classical determinacy principle is violated when a #O. In fact, 
as N-+ 00 the iniital values of x0 and x0’ (3.2) are the same, but the limiting motions 

tin1 XN(f) 

N-m 

will be different. In the “limiting” system, a small difference in the initial values of order N-’ generates finite 
differences of the solutions over times t- 1. The “small causes-large consequences” principle is a fundamental 
mechanism of the quasi-random behaviour of deterministic dynamic systems (see [22], for example). 
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